
cFS Applications in Rust
with n2o4
Zachary Catlin

Dept. of Astronomy and Astrophysics, Penn State Univ.

Notice

This presentation does not include any material
restricted by US export control laws.

● Evan Jennerjahn
● Jordan Josties
● David Palmer (LANL)
● Lukas Stone
● Ian Thornton
● Mitchell Wages
● Daniel Washington
● Michael Zugger
● and several alumni

The team:
● Abe Falcone,

Principal Investigator
● Michael Betts
● Jacob Buffington
● Zachary Catlin
● Joseph Colosimo
● Timothy Emeigh
● Derek Fox
● Hannah Grzybowski
● Fredric Hancock

● Evan Jennerjahn
● Jordan Josties
● David Palmer (LANL)
● Lukas Stone
● Ian Thornton
● Mitchell Wages
● Daniel Washington
● Michael Zugger
● and several alumni

The team:
● Abe Falcone,

Principal Investigator
● Michael Betts
● Jacob Buffington
● Zachary Catlin
● Joseph Colosimo
● Timothy Emeigh
● Derek Fox
● Hannah Grzybowski
● Fredric Hancock

Presenting
Thursday
morning!

The team:

(Note: latest available group photo, with a slightly different set of people)

Context: the BlackCAT mission
Astronomy… IN SPACE!

BlackCAT

BlackCAT
● Soft X-ray coded aperture

telescope using novel hybrid
CMOS detectors

● Detects and localizes
astronomical transients in the
~0.3‒20 keV band for rapid
follow-up by other facilities

● ~1 sr field of view, pointed
anti-sun

● Sole payload on a 6U CubeSat
in a ~550-km sun‑synchronous
orbit

● Expected launch date:
late 2024

Note: not the final mechanical design,
but should be close

BlackCAT
● Soft X-ray coded aperture

telescope using novel hybrid
CMOS detectors

● Detects and localizes
astronomical transients in the
~0.3‒20 keV band for rapid
follow-up by other facilities

● ~1 sr field of view, pointed
anti-sun

● Sole payload on a 6U CubeSat
in a ~550-km sun‑synchronous
orbit

● Expected launch date:
late 2024

BlackCAT instrument

Note: not the final mechanical design,
but should be close

BlackCAT
● Instrument hardware/​

gateware/​software and
science ops provided by the
BlackCAT team (PSU/LANL)

● Spacecraft bus, non-
instrument avionics, and
ground station provided by
NanoAvionics

● Sensor development by PSU
and Teledyne Imaging
Systems

● Mission and sensor dev.
funding by NASA

BlackCAT instrument

Note: not the final mechanical design,
but should be close

Important BlackCAT flight software requirements
● Needs to be able to enable, disable, and configure each

of the four detectors, and analyze their output
● Needs to be able to recognize probable interesting

transients (gamma-ray bursts, etc.) within seconds and
localize their position on the sky

● Needs to be able to send notifications of transients to
ground-side systems in near real time (~1‒3 min delay)

● Needs to send (during scheduled ground-station passes)
X-ray photon events around the time of transients
(stretch goal: and all other times as well)

BlackCAT flight software environment
● Instrument computer:

Xiphos Q7S
● Zynq-7020: 2 Cortex-A9 cores

at ~700 MHz + FPGA fabric
● 256 MiB ECC DRAM
● Operating system: Linux

(Yocto-based distribution
w/ Xiphos customizations)

● Flight software framework:
Core Flight System (cFS)

● BlackCAT peripherals:
– 4 TIS Speedster-EXD 550 detectors
– DACs and PWM for power supplies
– Instrument health: voltage monitors,

temperature sensors, heaters
– RS-422 serial to spacecraft avionics

Image credit: Xiphos Systems Corp.

The Rust programming language
Or: how I learned to stop worrying and love the
borrow checker

Rust
● Rust is a systems programming

language
● “helps you write faster, more reliable

software”
—Introduction, The Rust
Programming Language

● Uses an ownership system and
reference lifetimes to ensure
memory and thread safety by default

● Incorporates concepts from
higher-level languages when they
impose little or no runtime overhead

● De facto standard compiler, rustc,
outputs fast native code (using
language-specific optimization,
followed by LLVM)

https://doc.rust-lang.org/book/ch00-00-introduction.html

Rust history, very briefly
● 2006: started by Graydon

Hoare as a personal project
● 2010: made public after Mozilla

took interest
● 2015: language stabilized

enough for 1.0 release
● present: under active

development, but with stability
guarantees post-1.0
– separate stable and nightly channels

● Used within Firefox
● Used in production by Google,

AWS, etc., etc.

Language characteristics
● C-esque syntax
● Few new language concepts

(but sometimes the first
popular language with the
concept)

● Expression-based
● Variables immutable by default
● Strongly, statically-typed, but

with type inference
● Memory-safe by default (but

with unsafe keyword for
temporary exceptions)

fn an_operation(a: u32, b: u8) -> u32 {
 let x = match (b, a) {
 (0, a) => a % 2,
 (1, _) => 42,
 (_, a) => {
 let a = (a % 2);
 a + (b as u32)
 }
 };

 x + 3
}

Language characteristics
● Product (struct) and sum

(enum) types
● Generics for types and

functions/methods
● No object-oriented

inheritance, but traits
available for behaviors
generic over certain types

● References: pointers, but with
additional semantics around
mutability, lifetimes; never
NULL!

● Much more!

struct A {
 fld1: u32,
 fld2: bool,
 fld3: Option<i32>,
}

enum B {
 CaseA,
 CaseB(A),
 CaseC,
}

trait MyOperation {
 fn op(&self) -> bool;
}

struct GenericStruct<'a, T: MyOperation> {
 subject: T,
 field_x: &'a B,
 field_y: A,
}

Default tooling
● Rustup: toolchain

downloader/updater
● Cargo: standard package

manager & build system
– Crates.io: standard repository of

open-source Rust crates
– Build scripts: build-time code

generation and customization for
environment

● Rustdoc: generator of API
documentation

https://rustup.rs/
https://doc.rust-lang.org/cargo/
https://crates.io/
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/rustdoc/

Evaluation
● I like it!
● Not perfect, but an

improvement on C
● Does have a learning curve
● Generally, where language

is complex, difficult, or just
different, it is for good
reasons

● Language has good
ergonomics, a good
compiler, good tooling, and
good documentation

Ferris, the unofficial mascot of Rust

https://doc.rust-lang.org/

cFS apps in Rust, how do I even

 + , →

Rust bindings to cFS API functions
● To be a cFS application, we should use cFS API

functions
● Rust can call out to C functions (in unsafe

code)… but raw function calls aren’t idiomatic
in this case.

● Solution: create lightweight wrappers that
provide a Rustic façade

● We call it n2o4.

Image credits: Wikipedia contributors; NASA

API definitions: rewrite it in Rust… automatically
● Problem: Rust doesn’t

natively read C header
files

● Solution: use the bindgen
crate in a build script!

build.rs (simplified)

extern crate bindgen;

fn main() {
 let bindings = bindgen::builder()
 .header("cfs-all.h")
 .allowlist_type("(CFE|OS|OSAL|CCSDS).*")
 [...]
 .generate()
 .expect("Unable to generate bindings");
 bindings
 .write_to_file("${OUT_DIR}/cfs-all.rs");
}

cfs-all.h (excerpt)

#include <cfe.h>
#include <osapi.h>

#include <cfe_es_msg.h>
#include <cfe_evs_msg.h>

[...]

API definitions: rewrite it in Rust… almost automatically
● Problem: Rust doesn’t

natively read C header
files

● Solution: use the bindgen
crate in a build script!

● ...and compile a small C
file with wrappers for
static inline functions

build.rs (simplified)

extern crate bindgen;
extern crate cc;

fn main() {
 let bindings = bindgen::builder()
 .header("cfs-all.h")
 .header("cfs-shims.h")
 .allowlist_type("(CFE|OS|OSAL|CCSDS).*")
 [...]
 .generate()
 .expect("Unable to generate bindings");
 bindings
 .write_to_file("${OUT_DIR}/cfs-all.rs");

 cc::Build::new()
 .file("cfs-shims.c")
 .compile("cfs-shims");
}

cfs-shims.c (excerpt)

#include <cfe.h>

[...]

CFE_SB_MsgId_Atom_t SHIM_CFE_SB_MsgIdToValue(
 CFE_SB_MsgId_t MsgId
) {
 return CFE_SB_MsgIdToValue(MsgId);
}

[...]

Wrapping it up: simple example
● cfs-all.rs now has a bunch

of usable definitions, but
not as a safe, idiomatic
Rust interface

● So we write small, safe
wrappers

● Often the wrappers will
be inlined completely for
zero runtime overhead

${OUT_DIR}/cfs-all.rs

[...]
pub type CFE_ES_RunStatus = ::core::ffi::c_uint;
pub const
CFE_ES_RunStatus_CFE_ES_RunStatus_APP_RUN:
CFE_ES_RunStatus = 1;
pub const
CFE_ES_RunStatus_CFE_ES_RunStatus_APP_EXIT:
CFE_ES_RunStatus = 2;
pub const
CFE_ES_RunStatus_CFE_ES_RunStatus_APP_ERROR:
CFE_ES_RunStatus = 3;
[...]

extern "C" {
 pub fn CFE_ES_ExitApp(ExitStatus: uint32);
}

[...]

Wrapping it up: simple example
● cfs-all.rs now has a bunch

of usable definitions, but
not as a safe, idiomatic
Rust interface

● So we write small, safe
wrappers

● Often the wrappers will
be inlined completely for
zero runtime overhead

src/cfe/es.rs

/// The status (or requested status)
/// of a cFE application.
#[repr(u32)]
pub enum RunStatus {
 AppError
 = CFE_ES_RunStatus_CFE_ES_RunStatus_APP_ERROR,
 AppExit
 = CFE_ES_RunStatus_CFE_ES_RunStatus_APP_EXIT,
 AppRun = CFE_ES_RunStatus_CFE_ES_RunStatus_APP_RUN,
 [...]
}
[...]

/// Exits from the current application.
#[inline]
pub fn exit_app(exit_status: RunStatus) -> ! {
 unsafe { CFE_ES_ExitApp(exit_status as u32) };

 // If we get here, something's gone wrong with cFE:
 unreachable!("CFE_ES_ExitApp returned, somehow");
}

Wrapping it up: simple example
● cfs-all.rs now has a bunch

of usable definitions, but
not as a safe, idiomatic
Rust interface

● So we write small, safe
wrappers

● Often the wrappers will
be inlined completely for
zero runtime overhead

user of n2o4

use n2o4::cfe::es;

[...]

if unrecoverable_error() {
 es::exit_app(es::RunStatus::AppError);
}

Observations on cFS APIs from a Rust perspective
● Handles make for nice,

easy-to-wrap abstractions
● Obeying temporal

restrictions on pointer
accesses can be enforced
statically

src/cfe/sb.rs

/// A software bus pipe.
pub struct Pipe {
 /// cFE ID for the pipe.
 pub(crate) id: CFE_SB_PipeId_t,
}

impl Pipe {
 #[inline]
 pub fn receive_buffer<T, F>(
 &mut self,
 time_out: TimeOut,
 closure: F
) -> T
 where
 F: for<'a> FnOnce(Result<&'a Message, Status>) -> T,
 {
 [...]
 let s: Status = unsafe {
 CFE_SB_ReceiveBuffer(&mut buf_ptr,
 self.id, time_out.into())
 }.into();
 [...]
 }

}

User of n2o4

use n2o4::cfe::sb::{Pipe, TimeOut};

let mut p: n2o4::cfe::sb::Pipe = [...];

p.receive_buffer(TimeOut::Forever, |msg_maybe| {
 if let Ok(msg) = msg_maybe {
 [...process message...]
 }
});

Observations on cFS APIs from a Rust perspective
● Even things like printf(3)

format strings and their
use can be type-checked
at compile time without
special compiler support

use core::ffi::c_char;
use n2o4::cfe::evs::{
 EventSender, EventType::Information
};
use printf_wrap::PrintFmt;

const FMT: PrintfFmt<(u32, c_char)>
 = PrintfFmt::new_or_panic("A: %x, B: %c\0"); // OK
const BAD_FMT: PrintfFmt<(u32)>
 = PrintfFmt::new_or_panic("%s %s %s\n\0"); // compile
 // error
[...]

fn do_a_thing(ev: &EventSender) {
 [...]
 ev.send_event2(4, Information, FMT, // OK
 5u32, b'x' as c_char
);
 [...]
 ev.send_event2(4, Information, FMT, // compile
 5u32, 42u32 // error
);
 [...]
}

But wait...

What about actually integrating into the cFS build system?

Building a Rust-based cFS app
CMakeLists.txt

project(CFE_FOO_APP C)

add_cfe_app(foo)

rust-fsw/Cargo.toml

[package]
name = "foo"
version = "0.0.0"
edition = "2021"

[dependencies]
n2o4 = {
 git = "https://github.com/BlackCAT-CubeSat/n2o4.git",
 rev = "1ad09b2dbbca8687bc8a710cfccd4e7e5d78952e"
}

rust-fsw/src/lib.rs

#![no_std]

use n2o4::cfs::{es, evs, sb};

/// Entry point of application.
pub fn foo_APP_MAIN() {
 [...]
}

Doesn't "just" work. Need to integrate build systems.

Building a Rust-based cFS app
CMakeLists.txt

project(CFE_FOO_APP C)

add_cfe_app(foo fsw/src/placebo.c)

set(RUST_TARGET "armv7-unknown-linux-gnueabihf")

set(RUST_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/rust-fsw)
set(CARGO_TARGET_DIR ${CMAKE_CURRENT_BINARY_DIR}/target)
set(LIB_BUILD_DIR ${CARGO_TARGET_DIR}/${RUST_TARGET}/release)
set(LIB_FILE ${LIB_BUILD_DIR}/libfoo.a)

add_custom_command(
 OUTPUT ${LIB_FILE}
 WORKING_DIRECTORY ${RUST_SOURCE_DIR}
 COMMAND ${CMAKE_COMMAND} -E env
 "RUST_CFS_SYS_COMPILE_DEFINITIONS=[...]"
 "RUST_CFS_SYS_INCLUDE_DIRECTORIES=[...]"
 "RUST_CFS_SYS_COMPILE_OPTIONS=[...]"
 "CFLAGS=[...]"
 "CRATE_CC_NO_DEFAULTS=true"
 "BINDGEN_EXTRA_CLANG_ARGS=[...]"
 cargo +nightly build --jobs 1 -Z build-std=std,panic_abort
 --release --target ${RUST_TARGET} --target-dir ${CARGO_TARGET_DIR} --quiet
 DEPFILE ${LIB_BUILD_DIR}/libfoo.d
 DEPENDS ${RUST_SOURCE_DIR}/Cargo.toml
 VERBATIM
)

add_custom_target(foo_rust_build DEPENDS ${LIB_FILE})

add_library(foo_rust_lib STATIC IMPORTED)
add_dependencies(foo_rust_lib foo_rust_build)
set_target_properties(foo_rust_lib
 PROPERTIES
 IMPORTED_LOCATION ${LIB_FILE}
)

target_link_libraries(foo foo_rust_lib m)

target_link_options(foo
 PUBLIC LINKER:--require-defined=foo_APP_MAIN
)

set_directory_properties(
 PROPERTIES
 ADDITIONAL_CLEAN_FILES ${CARGO_TARGET_DIR}
)

rust-fsw/Cargo.toml

[package]
name = "foo"
version = "0.0.0"
edition = "2021"

[lib]
crate-type = ["staticlib"]

[dependencies]
n2o4 = { [...] }

[profile.release]
panic = "abort"

fsw/src/placebo.c

const char placebo = 'a';

rust-fsw/src/lib.rs

#![no_std]

use n2o4::cfs::{es, evs, sb};

/// Entry point of application.
#[no_mangle]
pub extern "C"
fn foo_APP_MAIN() {
 [...]
}

#[panic_handler]
fn panic([...]) -> ! {
 es::exit_app(
 es::RunStatus::AppError
);
}

Integration can be done… with a lot of stitching...

Building a Rust-based cFS app
CMakeLists.txt

project(CFE_FOO_APP C)

Assuming rust_cfs_app.cmake is included from
arch_build_custom.cmake, and RUST_TARGET
and a couple other variables are set in
toolchain-*.cmake:

add_cfe_app(foo fsw/src/placebo.c)

cfe_rust_crate(foo foo)

target_link_options(foo
 PUBLIC LINKER:--require-defined=foo_APP_MAIN
)

rust-fsw/Cargo.toml

[package]
name = "foo"
version = "0.0.0"
edition = "2021"

[lib]
crate-type = ["staticlib"]

[dependencies]
n2o4 = { [...] }

[profile.release]
panic = "abort"

fsw/src/placebo.c

const char placebo = 'a';

rust-fsw/src/lib.rs

#![no_std]

use n2o4::cfs::{es, evs, sb};

/// Entry point of application.
#[no_mangle]
pub extern "C"
fn foo_APP_MAIN() {
 [...]
}

#[panic_handler]
fn panic([...]) -> ! {
 es::exit_app(
 es::RunStatus::AppError
);
}

...much of which can be wrapped for easy re-use.

Conclusions, and an invitation

Conclusions
● Rust is pretty good
● You can write cFS applications in Rust

...with a fair bit of non-default setup
– and currently only with the nightly channel

● So far, application development has justified building
this infrastructure

Invitation to join in
● n2o4 and the build support are a work in progress, and

you can help make it better!
– Bindings for more cFE, OSAL APIs
– Better testing support
– API version flexibility
– Building for non-Linux targets
– Cargo build concurrency
– ...

● We're open to questions, pull requests, issues, etc.
● Or just use what we’ve made so far!

https://github.com/BlackCAT-CubeSat/n2o4

https://github.com/BlackCAT-CubeSat/n2o4

Questions

Zachary Catlin
zec0@psu.edu
 zec

mailto:zec0@psu.edu

