cFS Applications in Rust
with n204

Zachary Catlin
Dept. of Astronomy and Astrophysics, Penn State Univ.

!‘o,, PennState

Notice

This presentation does not include any material
restricted by US export control laws.

"‘o,’ PennState

1% Los Alamos

NATIONAL LABORATORY

The team:

« Abe Falcone, * Evan Jennerjahn
Principal Investigator .
* Jordan Josties

* Michael Be.ttS « David Palmer (LANL)
* Jacob Buffington
 Lukas Stone

« Zachary Catlin
* lan Thornton

Joseph Colosimo |
Timothy Emeigh * Mitchell Wages
* Daniel Washington

* Derek Fox |
« Hannah Grzybowski * Michael Zugger
. Fredric Hancock * and several alumni

"‘o,, PennState

The team:

* Abe Falcone,
Principal Investigator

* Michael Betts

* Jacob Buffington

« Zachary Catlin
Joseph Colosimo
Timothy Emeigh

* Derek Fox

* Hannah Grzybowski
* Fredric Hancock

1% Los Alamos

NATIONAL LABORATORY

Evan Jennerjahn

Jordan Josties

David Palmer (LANL)

_ukas Storte .
Presenting
an Thornto Thursday
Mitchell Wages morning!
Daniel Washington

Michael Zugger
and several alumni

"‘o,, PennState

The team:

(Note: latest available group photo, with a slightly different set of people) ':":, PennState

Context: the BlackCAT mission
Astronomy... IN SPACE!

BlackCAT

PennState

BlackCAT

* Soft X-ray coded aperture
telescope using novel hybrid
CMOS detectors

e Detects and localizes
astronomical transients in the

~0.3-20 keV band for rapid
follow-up by other facilities

 ~1 srfield of view, pointed
anti-sun

* Sole payload on a 6U CubeSat
in @ ~550-km sun-synchronous
orbit

* Expected launch date: Note: not the final mechanical design,
late 2024 but should be close

.~ PennState

B | aC kCAT BlackCAT instrument

* Soft X-ray coded aperture
telescope using novel hybrid
CMOS detectors

e Detects and localizes
astronomical transients in the

~0.3-20 keV band for rapid
follow-up by other facilities

 ~1 srfield of view, pointed
anti-sun

* Sole payload on a 6U CubeSat
in @ ~550-km sun-synchronous
orbit

* Expected launch date: Note: not the final mechanical design,
late 2024 but should be close

J PennState

B | aC kCAT BlackCAT instrument

* Instrument hardware/
gateware/software and
science ops provided by the
BlackCAT team (PSU/LANL)

* Spacecraft bus, non-
iInstrument avionics, and
ground station provided by
NanoAvionics

* Sensor development by PSU
and Teledyne Imaging

Systems
 Mission and sensor dev. Note: not the final mechanical design,
funding by NASA but should be close

"‘o,’ PennState

Important BlackCAT flight software requirements

* Needs to be able to enable, disable, and configure each
of the four detectors, and analyze their output

* Needs to be able to recognize probable interesting
transients (gamma-ray bursts, etc.) within seconds and
localize their position on the sky

* Needs to be able to send notifications of transients to
ground-side systems in near real time (~1-3 min delay)

* Needs to send (during scheduled ground-station passes)
X-ray photon events around the time of transients
(stretch goal: and all other times as well)

"‘o,, PennState

BlackCAT flight software environment

Instrument computer:
Xiphos Q7S

Zyng-7020: 2 Cortex-A9 cores
at ~700 MHz + FPGA fabric

256 MiB ECC DRAM

Operating system: Linux
(Yocto-based distribution
w/ Xiphos customizations)

Flight software framework:
Core Flight System (cFS)

BlackCAT peripherals:
- 4 TIS Speedster-EXD 550 detectors
- DACs and PWM for power supplies

- Instrument health: voltage monitors,
temperature sensors, heaters

- RS-422 serial to spacecraft avionics

Image credit: Xiphos Systems Corp.

"‘o,’ PennState

The Rust programming language

Or: how | learned to stop worrying and love the
borrow checker

Rust

Rust is a systems programming
language

“helps you write faster, more reliable
software”

—Introduction, The Rust
Programming Language

Uses an ownership system and
reference lifetimes to ensure
memory and thread safety by default

Incorporates concepts from
higher-level languages when they
Impose little or no runtime overhead

De facto standard compiler, rustc,
outputs fast native code (using
language-specific optimization,
followed by LLVM)

"‘o,, PennState

https://doc.rust-lang.org/book/ch00-00-introduction.html

Rust history, very briefly

* 2006: started by Graydon
Hoare as a personal project

« 2010: made public after Mozilla
took interest

 2015: language stabilized
enough for 1.0 release

* present: under active
development, but with stability
guarantees post-1.0

- separate stable and nightly channels

 Used within Firefox

* Used in production by Google,
AWS, etc., etc.

"‘o,, PennState

Language characteristics

o C_esque syntax fn an_operation(a: u32, b: u8) -> u32 {
let x = match (b, a) {
* Few new language concepts (0, a) => a % 2,
(but sometimes the first (1o) = 2
popular language with the (2 = ¢ (2% 2
Concept) a + (b as u32)
- Expression-based .

* Variables immutable by default

* Strongly, statically-typed, but 3
with type inference

* Memory-safe by default (but
with unsafe keyword for
temporary exceptions)

"‘o,’ PennState

Language characteristics

Product (struct) and sum
(enum) types

Generics for types and
functions/methods

No object-oriented
Inheritance, but traits
available for behaviors
generic over certain types

References: pointers, but with
additional semantics around
mutability, lifetimes; never
NULL'!

Much more!

struct A {
fld1i:
fld2:
f1d3:

u3z2,

bool,
Option<i32>,
3

enum B {
CaseA,
CaseB(A),
CaseC,

}

trait MyOperation {
fn op(&self) -> bool;

}

struct GenericStruct<'a, T: MyOperation> {
subject: T,
field_x: &'a B,

field_y: A,
"‘o,’ PennState

Default tooling

* Rustup: toolchain
downloader/updater

* Cargo: standard package
manager & build system

- Crates.io: standard repository of
open-source Rust crates

- Build scripts: build-time code
generation and customization for
environment

* Rustdoc: generator of API
documentation

"‘o,’ PennState

https://rustup.rs/
https://doc.rust-lang.org/cargo/
https://crates.io/
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/rustdoc/

Evaluation

| like it!

Not perfect, but an
iImprovement on C

Does have a learning curve

Generally, where language
Is complex, difficult, or just
different, it is for good
reasons

Language has good
ergonomics, a good
compiler, good tooling, and
good documentation

Ferris, the unofficial mascot of Rust

"‘o,’ PennState

https://doc.rust-lang.org/

cFS apps in Rust, how do | even

Rust bindings to cFS API functions

* To be a cFS application, we should use cFS API
functions

 Rust can call out to C functions (in unsafe

code)... but raw function calls aren’t idiomatic
In this case.

* Solution: create lightweight wrappers that
provide a Rustic facade

e We call it n204.

_ . _ "y PennState
Image credits: Wikipedia contributors; NASA g

APl definitions: rewrite it in Rust... automatically

* Problem: Rust doesn’t
natively read C header
files

* Solution: use the bindgen
crate in a build script!

build.rs (simplified)

extern crate bindgen;

fn main() {
let bindings = bindgen: :builder ()
.header("cfs-all.h")
.allowlist_type(" (CFE|OS|OSAL|CCSDS).*")
[-]
.generate()
.expect("Unable to generate bindings");
bindings
write_to_file("${OUT_DIR}/cfs-all.rs");
}

cfs-all.h (excerpt)

#include <cfe.h>
#include <osapi.h>

#include <cfe_es_msg.h>
#include <cfe_evs_msg.h>

"‘o,’ PennState

[...]

API definitions: rewrite it in Rust... almost automatically

* Problem: Rust doesn’t pulld.rs (simplified)

extern crate bindgen;

natively read C header

n
ﬁ I eS let bindings = bindgen::builder ()

.he all.h")
he

L QD
o o

er("cfs-
. er("cfs-shims.h")
.allowlist_type("(CFE|OS|OSAL|CCSDS).*")

* Solution: use the bindgen 3

.generate()

crate in a build script! gt et 2o gnerate i

.write_to_file("${OUT_DIR}/cfs-all.rs");
* ...and compile a small C
file with wrappers for }
static inline functions cfsshims.c(excerpt

#include <cfe.h>

—

[...]

CFE_SB_MsgId_Atom_t SHIM_CFE_SB_MsgIdToValue(
CFE_SB_MsgId_t MsgId

) {
return CFE_SB_MsgIdToValue(MsgId);

}
"‘o,’ PennState

Wrapping it up: simple example

e cfs-all.rs now has a bunch
of usable definitions, but
not as a safe, iIdiomatic
Rust interface

e So we write small, safe
wrappers

* Often the wrappers will
be inlined completely for
zero runtime overhead

${OUT _DIR}/cfs-all.rs

[...]
pub type CFE_ES_RunStatus = ::core::ffi::c_uint;

pub const
CFE_ES_RunStatus_CFE_ES_RunStatus_APP_RUN:
CFE_ES_RunStatus = 1;

pub const
CFE_ES_RunStatus_CFE_ES_RunStatus_APP_EXIT:
CFE_ES_RunStatus = 2;

pub const
CFE_ES_RunStatus_CFE_ES_RunStatus_APP_ERROR:
CFE_ES_RunStatus = 3;

[..-]

extern "C" {
pub fn CFE_ES_ExitApp(ExitStatus: uint32);

}
[...]

"‘o,’ PennState

Wrapping it up: simple example

e cfs-all.rs now has a bunch
of usable definitions, but
not as a safe, iIdiomatic
Rust interface

e So we write small, safe
wrappers

* Often the wrappers will
be inlined completely for
zero runtime overhead

src/cfe/es.rs

/// The status (or requested status)
/// of a cFE application.
#[repr(u32)]
pub enum RunStatus {
AppError
= CFE_ES_RunStatus_CFE_ES_RunStatus_APP_ERROR,
AppExit
= CFE_ES_RunStatus_CFE_ES_RunStatus_APP_EXIT,
AppRun = CFE_ES_RunStatus_CFE_ES_RunStatus_APP_RUN,

[...]

~ <Y

|

/// Exits from the current application.

#[inline]

pub fn exit_app(exit_status: RunStatus) -> ! {
unsafe { CFE_ES_ExitApp(exit_status as u32) };

// If we get here, something's gone wrong with cFE:
unreachable! ("CFE_ES_ExitApp returned, somehow");

"‘o,’ PennState

}

Wrapping it up: simple example

e cfs-all.rs now has a bunch user of n204
of usable definitions, but
not as a safe, idiomatic

use n2o04::.cfe::es;

Rust interface b
. if unrecoverable_error() {
® SO we erte Sma”’ Safe es::exit_app(es: :RunStatus::AppError);
wrappers)

* Often the wrappers will
be inlined completely for
zero runtime overhead

"‘o,’ PennState

Observations on cFS APIs from a Rust perspective

* Handles make for nice, src/cfe/sb.rs
easy-tO-Wrap abstractions /// A software bus pipe.

pub struct Pipe {

* Obeying temporal rub(crate) 1. CFe. 58 pipeTd t,
restrictions on pointer)
accesses can be enforced it riee <
Statlca”y pgénginzicei\;e_bufferd, F>(

time_out: TimeOut,
closure: F
User of n2o04) > T
where
F: for<'a> FnOnce(Result<&'a Message, Status>) -> T,

use n2o04::cfe::sb::{Pipe, TimeOut};
{
let mut p: n204::cfe::sb::Pipe = [...]; [---]
let s: Status = unsafe {
CFE_SB_ReceiveBuffer (&mut buf_ptr,

p.receive_buffer(TimeOut: :Forever, |msg_maybe| { _ _ _
self.id, time_out.into())

if let Ok(msg) = msg_maybe { 1.into();
[...process message...]

[...1
} }

1) @ PennState
}

Observations on cFS APIs from a Rust perspective

* Even things like printf(3) ... core:orrisic car
format strings and their = wepoerees C romation
use can be type-checked i T
at compile time without PP
SpeCiaI COmpilel‘ Support Consi Erlnt?;;:thZ@iégfﬁanﬁhir);x, B: %c\0"); // OK

const BAD_FMT: PrintfFmt<(u32)>
= PrintfFmt: :new_or_panic("%s %s %s\n\@"); // compile
// error

[...]

fn do_a_thing(ev: &EventSender) {

[...]

ev.send_event2(4, Information, FMT, // OK
5u32, b'x' as c_char

)

[...]

ev.send_event2(4, Information, FMT, // compile
5u32, 42u32 // error

);

) Lo "‘o,’ PennState

But walit...

What about actually integrating into the cFS build system?

!‘o,’ PennState

Building a Rust-based cFS app

CMakelists.txt rust-fsw/Cargo.toml rust-fsw/src/lib.rs
. [package]
project(CFE_FOO_APP C) name = "Foo" #![no_std]
version = "0.0.0"
add_cfe_app(foo) edition = "2021" use n204::cfs::{es, evs, sb},;
[dependencies] /// Entry point of application.
n2o4 = { pub fn foo_APP_MAIN() {
git = "https://github.com/BlackCAT-CubeSat/n204.git", []
rev = "1ad09b2dbbca8687bc8a710cfccd4e7e5d78952e") Y
}

Doesn't "just" work. Need to integrate build systems. g PennState

Building a Rust-based cFS app

CMakelists.txt

project (CFE_FOO_APP C)
add_cfe_app(foo fsw/src/placebo.c)
set (RUST_TARGET "armv7-unknown-linux-gnueabihf")

set (RUST_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}/rust-fsw)
set(CARGO_TARGET_DIR ${CMAKE_CURRENT_BINARY_DIR}/target)
set(LIB_BUILD_DIR ${CARGO_TARGET_DIR}/${RUST_TARGET}/release)
set(LIB_FILE ${LIB_BUILD_DIR}/libfoo.a)

add_custom_command (

OUTPUT ${LIB_FILE}

WORKING_DIRECTORY ${RUST_SOURCE_DIR}

COMMAND ${CMAKE_COMMAND} -E env
"RUST_CFS_SYS_COMPILE_DEFINITIONS=[...]"
"RUST_CFS_SYS_INCLUDE_DIRECTORIES=[...]J"
"RUST_CFS_SYS_COMPILE_OPTIONS=[...]"

"CFLAGS=[...]"

"CRATE_CC_NO_DEFAULTS=true"

"BINDGEN_EXTRA_CLANG_ARGS=[...]"

cargo +nightly build --jobs 1 -Z build-std=std, panic_abort

--release --target ${RUST_TARGET} --target-dir ${CARGO_TARGET_DIR} --quiet

DEPFILE ${LIB_BUILD_DIR}/libfoo.d

DEPENDS ${RUST_SOURCE_DIR}/Cargo.toml

VERBATIM

)

add_custom_target(foo_rust_build DEPENDS ${LIB_FILE})

add_library(foo_rust_1lib STATIC IMPORTED)
add_dependencies(foo_rust_lib foo_rust_build)
set_target_properties(foo_rust_1lib

PROPERTIES

IMPORTED_LOCATION ${LIB_FILE}
)

target_link_libraries(foo foo_rust_1lib m)

target_link_options(foo
PUBLIC LINKER:--require-defined=foo_APP_MAIN
)

set_directory_properties(

PROPERTIES

ADDITIONAL_CLEAN_FILES ${CARGO_TARGET_DIR}
)

Integration can be done... with a lot of stitching...

rust-fsw/Cargo.toml rust-fsw/src/lib.rs

[package]

name = "foo"
version = "0.0.0"
edition = "2621"

[lib]
crate-type = ["staticlib"]

[dependencies]

n2o4 = { [...] }

[profile.release]
panic = "abort"

fsw/src/placebo.c

const char placebo = 'a';

"‘o,’ PennState

#![no_std]
use n204::cfs::{es, evs, sb},;

/// Entry point of application.
#[no_mangle]

pub extern "C"

fn foo_APP_MAIN() {

[...]

#[panic_handler]
fn panic([...]) -> ! {
es::exit_app(
es:.:RunStatus: :AppError

),
}

Building a Rust-based cFS app

CMakelists.txt

project(CFE_FOO_APP C)

Assuming rust_cfs_app.cmake is included from
arch_build_custom.cmake, and RUST_TARGET

and a couple other variables are set in

toolchain-*.cmake:

add_cfe_app(foo fsw/src/placebo.c)
cfe_rust_crate(foo foo)

target_link_options(foo
PUBLIC LINKER:--require-defined=foo_APP_MAIN

)

...much of which can be wrapped for easy re-use.

rust-fsw/Cargo.toml rust-fsw/src/lib.rs

[package] #![no_std]
name = "foo"
version = "0.0.0" use n204::cfs::{es, evs, sb};

edition = "2021"

/// Entry point of application.
#[no_mangle]

pub extern "C"

fn foo_APP_MAIN() {
[dependencies] [...]

n2o4 = { [...] } }

[lib]
crate-type = ["staticlib"]

[profile.release] #[panic_handler]

panic = "abort" fn panic(/[...]) -> ! {
es::exit_app(

fSW/SrC/pIaCEbO-C es::RunStatus: :AppError
)

const char placebo = 'a'; }

"‘o,’ PennState

Conclusions, and an invitation

Conclusions

* Rust is pretty good

* You can write cFS applications in Rust
...with a fair bit of non-default setup

- and currently only with the nightly channel

* So far, application development has justified building
this infrastructure

"‘o,’ PennState

Invitation to join In

* n204 and the build support are a work in progress, and
you can help make it better!
- Bindings for more cFE, OSAL APIs
- Better testing support
- API version flexibility
- Building for non-Linux targets
- Cargo build concurrency

* We're open to questions, pull requests, issues, etc.

* Or just use what we've made so far!
https://github.com/BlackCAT-CubeSat/n204

"‘o,’ PennState

https://github.com/BlackCAT-CubeSat/n2o4

Questions

Zachary Catlin
zecO@psu.edu

) zec

mailto:zec0@psu.edu

